Calculations Revision materials – Foundation

Content will be tested in Chemistry Paper 1 and Paper 2

Checklist

Key points:	٢	8
Calculations Revision		
How to calculate the mean		
How to calculate % change		
How to work out range		
Work out conversation of units		
Work out standard form		
Relative masses and moles		
How to work out relative formula mass		
How to work out % of an element in a compound		
How to work out concentration		

Calculating Mean

Key Knowledge

- To calculate the mean you add up all of the numbers and then divide them by how many pieces of data you have.
- > If there are any anomalous results, remove them before calculating the mean.

Worked examples

Work out the mean of the data below

12, 13, 14, 11,12, 12, 13

Step 1- Total

12+13+14+11+12+12+13= **87**

Step 2- Divide total by number of pieces of data

87 ÷ 7 = **12.4**

The mean is 12.4

Exam practice 1

1. Calculate the mean reaction time.

person	1	2	3	4	5
reaction time/seconds	0.258	0.685	0.236	0.246	0.268

Mean =

2. Calculate the mean ADH level in people without diabetes.

people without diabetes insipidus	ADH level in blood / μg per dm ³	
A	5.2	
В	2.8	
С	4.9	
D	3.5	
Mean ADH level:		

Mean ADH levels =

3. Calculate the most appropriate mean volume of oxygen produced at pH 7.

	volume of oxygen produced in cm ³					
pН	repeat 1	repeat 2	repeat 3	repeat 4	mean	
1	1.2	1.6	1.4	1.8	1.5	
4	37.7	48.3	38.1	39.9	38.6	
7	53. <mark>0</mark>	51.2	52.8	61.0		
10	29.0	28.5	29.6	28.7	29.3	
12	5.2	1.8	1.0	1.4	1.4	

Mean at pH 7 =

4. Why do we calculate a mean?

.....

Calculating percentage change

Key Knowledge

➢ Equation

Final value – starting value x 100

starting value

Worked example

A willow tree initially has a mass of 2.27kg. After 5 years it has a mass of 76.74kg

<u>76.74 - 2.27</u> x 100 = 3281 2.27 = 3281 % increase

Exam practice 2

1. Calculate the percentage change in mass for chip 5.

chip	concentration of sucrose solution mol per dm ⁻³	starting mass of beetroot chip in grams	end mass of beetroot chip in grams
1	0.0 (water)	2.56	3.89
2	0.2	2.47	2.88
3	0.4	1.99	2.00
4	0.6	2.30	2.12
5	0.8	2.15	1.84
6	1.0	2.22	1.62

2. Suggest why calculating a percentage change is more useful than calculating the change in mass in this investigation

3. Calculate the missing percentage change in mass.

concentration of salt solution / %		percentage		
	start	after 1 hour	change	change / %
0	10.2	13.1	+2.9	+28.4
10	9.8	11.4	+1.6	+16.3
20	10.3	9.8	-0.5	
30	10.1	8.9	-1.2	-11.9
40	9.7	7.7	-2.0	-20.6

% change =

<u>Range</u>

Key Knowledge

The range is the difference between the highest and lowest values in a set of data.

Worked example

Example 1

Find the range of these numbers: 6, 4, 6, 5, 3. First put them in order to make it easier to see the lowest and highest. 3, 4, 5, 6, 6

The lowest number is 3 and the highest is 6.

Find the difference. Subtract 3 from 6.

6 - 3 = 3 The range of this set of data is 3.

- 1. Find the range of these numbers: 16, 17, 16, 19, 13.
- 2. Find the range of these numbers: 89, 78, 90, 76, 42.
- Compare the range of temperatures for Cardiff and London for a week in July. Temperatures are given in the table in degrees centigrade. Sun Mon Tue Wed Thu Fri Sat

Cardiff 19° 19° 20° 20° 20° 18° 18° **London** 20° 22° 22° 21° 20° 21° 19°

Converting Units

Worked example

To convert your units do the calculation shown in the diagram e.g. going from mm to m you divide the number by 1000 6mm = 0.006m

- 1. Convert 34 millimetres into metres.
- 2. Convert 1034 nanometres into picometres.
- 3. Convert 6 000 000 seconds into microseconds.
- 4. Convert 87 nanoseconds into milliseconds.

5. The answer you get to a question is 0.15mm.

Give your answer in a) m b) μ m c) nm

Standard form

Key information

We show figures as numbers between 1 and 10 multiplied by a power of 10 The index number tells us how many place values to move the digit.

 \mathbf{Y}

 $A \times 10^{n}$

Index number

1 2 3 4 5 6

For numbers greater than 0, count how many times you need to move the unit to the right until you form a number between 1 and 10.

Write this number as the power of 10, insert the decimal point and remove the zeros.

You do the reverse for a number smaller than 0 and end up with a negative power.

 $150000 = 1.15 \times 10^{6}$

Exam practice 5

1. Hydrochloric acid with a concentration of 0.001mol/dm³ is used in a chemical reaction. Give the concentration of the acid in stand form.

..... mol/dm³

2. In a factory, 134000dm³ of a chemical are added to a reaction vessel. Write the volume used in standard form

.....dm³

3. A biologist measures a cell that she is viewing under a microscope. The width of the cell is 0.00125mm. Write the width in standard form.

.....mm

Relative masses and moles

Key Knowledge Relative atomic masses

- The mass of a single atom is so tiny that it is not practical to use it in experiments or calculations, that is why we use relative masses.
- For relative atomic masses the carbon-12 $\binom{12}{6}C$ atom is used as the standard atom. The masses of all other atoms are a comparison of their mass to the mass of the carbon-12 atom, e.g. hydrogen has a relative atomic mass of 1, which means most of its atoms have a mass that is $\frac{1}{12}$ of the mass of a $\binom{12}{6}C$ atom.
- \blacktriangleright The symbol for relative atomic mass is A_r
- > In the periodic table, the bigger number by each element is its relative atomic mass.
- Relative atomic mass takes into account the relative abundance (proportions) of any isotopes of the element found naturally. That is why some elements have a relative mass with decimals (e.g. chlorine $A_r = 35.5$).

Worked example:

Chlorine has two principle isotopes, ${}^{35}_{17}Cl$ and ${}^{37}_{17}Cl$. Their percentage abundances are 76% and 24%.

To calculate the mean relative mass you need to:

- 1. Multiply each of the isotopes' masses by their percentage abundance
- 2. Add the answers from step 1
- 3. Divide the number from step 2 by 100.

 A_r (Cl) = $\frac{(35 \times 76) + (37 \times 24)}{100}$ = 35.48 \approx 35.5

- 1. From the periodic table, find the relative atomic masses of the following elements:
 - a. Nitrogen
 - b. Magnesium
 - c. Argon
 - d. Copper
 - e. Platinum
 - f. Barium
 - g. Bismuth
- Copper has two isotopes, ⁶³Cu and ⁶⁵Cu. The percentage abundances are 69% and 31%. Calculate the mean relative atomic mass of copper.

Key Knowledge Relative formula mass

- Relative formula mass is the sum of the relative atomic masses of all the atoms shown in a chemical formula of a substance.
- > The symbol for relative formula mass is M_r .
- When dealing with molecular substances it can also be referred to as the relative molecular mass.
- You can calculate the percentage by mass of an element in a compound using the atomic masses of the elements and the formula mass of the compound:
 - % by mass(element) = $\frac{A_r(element) \times number of atoms}{M_r(compound)} \times 100\%$

Worked example, relative formula mass: Calculate the formula mass of sulfuric acid. The formula is H₂SO₄. The $A_r(H)=1$, $A_r(S)=32$, $A_r(O)=16$. $M_r = (1x2) + 32 + (16x4) = 2 + 32 + 64 = 98$

Worked example, percentage by mass: Calculate the percentage by mass of hydrogen in water. $A_r(H)=1$ $A_r(O)=16$ $M_r(H_2O) = (1x2) + 16 = 18$ % by mass(H) $= \frac{1\times 2}{18} \times 100\% = 11\%$

- 1. Calculate the relative formula mass for the following compounds:
 - a. Nitric acid
 - b. Hydrochloric acid
 - c. Water
 - d. CaCO₃
 - e. NaOH
- 2. Calculate the % by mass of oxygen in the following compounds:
 - a. H_2O
 - b. NaOH
 - c. CaCO₃

Exam practice 8

Q1.

	(ii)	Calculate the relative formula mass of ammonium chloride, NH ₄ Cl.	
		(Relative atomic masses: H = 1, N = 14, Cl = 35.5)	
		Relative formula mass =	(2)
~~			(2)
Q2. adde		on is an essential part of the human diet. Iron(II) sulfate is sometimes white bread flour to provide some of the iron in a person's diet.	
	(a)	The formula of iron(II) sulfate is FeSO ₄	
		Calculate the relative formula mass (M_r) of FeSO ₄	
		Relative atomic masses: O = 16; S = 32; Fe = 56.	
		The relative formula mass (M_r) =	(2)
			(-)
Q3.	T bacte	oothpastes often contain fluoride ions to help protect teeth from attack by eria.	
	Some	e toothpastes contain tin(II) fluoride.	
	This o	compound has the formula SnF_2 .	
	(a)	Calculate the relative formula mass (M_r) of SnF ₂ .	
		Relative atomic masses: F = 19; Sn = 119	
		Relative formula mass (<i>M</i> _r) =	
			(2)

Key knowledge for % of an element in a compound

- 1. Write down the formula of the compound
- 2. Use the relative atomic mass (A_r) of the elements to calculate the relative formula mass (M_r).
- 3. Write the mass of the element you are investigating as a fraction of the total M_r .
- 4. Find the percentage by multiplying the fraction by 100.

Example

What percentage of carbon dioxide is actually carbon?

Formula of carbon dioxide = CO₂

1. Ar of carbon = 12

Ar of oxygen = 16

Therefore $Mr = 12 + (16 \times 2) = 44$

2. <u>Mass of carbon</u> = $\frac{12}{44}$

4. The percentage of carbon in the compound is:

<u>12</u> x 100 = 27.3 %

Exam practice 9

Q1.

(a) The percentage by mass of oxygen in carbon dioxide (CO₂) is calculated by the equation:

percentage by mass = $\frac{\text{number of atoms of O \times Relative atomic mass of oxygen (O)}}{\text{relative molecular mass of carbon dioxide (CO₂)}} \times 100$

Relative atomic masses (A_r): C = 12 O = 16

Calculate the percentage by mass of oxygen in carbon dioxide (CO₂).

Percentage by mass of oxygen = _____

%

Q2.

Some students investigated magnesium oxide.

(a) Magnesium oxide has the formula MgO.

Calculate the percentage by mass of magnesium in magnesium oxide.

Percentage by mass of magnesium in magnesium oxide = ____%

(2)

Q3.

(a) Molecular formula of copper oxide is CuO.

Calculate the percentage of copper in copper oxide.

Percentage of copper = _____% (2)

Expressing concentrations

Key Knowledge Volume

- > Volume is the amount of space a substance or object occupies.
- > There are many units that can be used to measure volume:
 - o Millilitres ml
 - Litres I
 - \circ Cubic metres m³
 - Cubic centimetres cm³
 - Cubic decimetres dm³ ← THIS IS THE UNIT CHEMISTS USE MOST
- 1 litre is the same as 1 dm³
- 1 ml is the same as 1 cm³
- Just as there are 1000 millilitres in a litre, there are 1000 cm³ in 1 dm³ cm³ to dm³

Worked examples:

Q1. A solution has a volume of 500cm³, what is its volume in dm³?

- 1 dm³ = 1000 cm³
 - So to convert cm³ into dm³ you just have to divide by 1000!

$$\frac{500 \ cm^3}{1000} = 0.5 \ dm^3$$

Q2. A solution has a volume of 0.432 dm³, what is its volume in cm³?

- 1 dm³ = 1000 cm³
- So to convert dm³ into cm³ you just have to multiply by 1000! 0.432 dm³ \times 1000 = 432 cm³

- 1. What is 0.025 dm^3 in cm³?
- 2. What is 270 cm³ in dm³?
- 3. How many cm^3 are in 0.052 dm^3 ?
- 4. A solution has a total volume of 986 cm³, what is this in cubic decimetres?
- 5. 25 cm³ is taken from a solution of total volume 0.45 dm³ what volume of the solution remains?

Key Knowledge Concentration

- Solute the substance that is dissolved in a liquid.
- Solvent a liquid in which a substance is dissolved.
- Solution a mixture of the dissolved solute and solvent.
- Concentration the amount of substance in a certain amount of solution.
- Calculating concentration:

• concentration,
$$c(g/dm^3) = \frac{amount of solute, m(g)}{molecular}$$

- If the concentration is high, we call the solution concentrated.
 If the concentration if low, we call the solution dilute.
- Increasing the volume (adding more solvent), decreases the concentration.
- Decreasing the volume (evaporating some of the solvent), increases the concentration.
- By rearranging the concentration equation, you can calculate how much solute is in the solution, if you know the concentration and the volume of the solution.

Worked examples:

Q1. If 4g of sodium is dissolved in 2 dm³ what is the concentration?

$$c(g/dm^3) = \frac{m(g)}{V(dm^3)}$$

c = 4/ 2= 2 g/dm³

Q2. If 5.5g of sodium hydroxide is dissolved in 3 dm³ what is the concentration?

c = 5.5/3= 1.83 g/dm³

Q3. A solution of potassium hydroxide has a concentration of 10 g/dm^3 , what mass of potassium hydroxide is dissolved in 0.5 dm³ of it?

 $m(g) = c(g/dm^3) \times V(dm^3)$ m = 10 x 0.5 = 5 g

- 1. If 5 g of sodium is dissolved in 1 dm³ what is the concentration?
- 2. If 8 g of sodium hydroxide is dissolved in 2 dm³ what is the concentration?
- 3. What is the concentration of a solution when 50 g of hydrogen chloride is dissolved in 5 dm³ of water?
- 4. How concentrated is a 500 cm³ solution that contains 6 g of potassium hydroxide?

- 5. What mass of lithium is dissolved in 0.4 dm³ of a 15 g/dm³ solution?
- 6. How many grams of hydrogen chloride are dissolved in 4 dm³ of a 1.4 g/dm³ solution?
- 7. A flask contains 400 cm³ of a 5 g/dm³ solution of potassium hydroxide. If all the water was evaporated, what mass of potassium hydroxide would remain?
- 8. A student took 25 cm³ of 0.1 g/dm³ sodium thiosulfate solution. What mass of sodium thiosulfate does it contain

- 1. Calculate the concentrations of each of the following solutions in units of g/dm3:
 - a) 10.0 g of sodium chloride dissolved in 2.00 dm³ of water

	(1 mark)
b)	2.5 g of glucose dissolved in 0.5 dm ³ of water
c)	(1 mark) 3.8 g of copper sulfate dissolved in 250 cm ³ of water
d)	(2 marks) 25.6 g of potassium chloride dissolved in 1500 cm3 of water.

(2 marks)
 2. Calculate the mass of solute dissolved in each of the following solutions in g:

 a) 2 dm³ copper sulphate solution of concentration 3 g/dm³.
 (1 mark)
 b) 5 dm³ sodium carbonate solution of concentration 2.5 g/dm³.
 (1 marks)
 c) 250 cm3 copper sulfate solution of concentration 1.2 g/dm³.
 (2 marks)