Calculations Revision materials - Foundation
 Content will be tested in Chemistry Paper 1 and Paper 2

Checklist

Key points:	Calculations Revision	0
How to calculate the mean		
How to calculate \% change		
How to work out range		
Work out conversation of units		
Work out standard form		
Relative masses and moles		
How to work out relative formula mass		
Ho work out \% of an element in a compound		
How to work out concentration		

Calculating Mean

Key Knowledge
> To calculate the mean you add up all of the numbers and then divide them by how many pieces of data you have.
$>$ If there are any anomalous results, remove them before calculating the mean.
Worked examples
Work out the mean of the data below
$12,13,14,11,12,12,13$
Step 1-Total
$12+13+14+11+12+12+13=87$
Step 2- Divide total by number of pieces of data
$\mathbf{8 7} \div 7=12.4$
The mean is 12.4

Exam practice 1

1. Calculate the mean reaction time.

person	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
reaction time/seconds	0.258	0.685	0.236	0.246	0.268

Mean =
2. Calculate the mean ADH level in people without diabetes.

people without diabetes insipidus	ADH level in blood / $\mu \mathrm{g}$ per dm^{3}
A	5.2
B	2.8
C	4.9
D	3.5
Mean ADH level:	

Mean ADH levels =
3. Calculate the most appropriate mean volume of oxygen produced at pH 7 .

	volume of oxygen produced in $\mathbf{c m}^{\mathbf{3}}$				
$\mathbf{p H}$	repeat 1	repeat 2	repeat 3	repeat 4	mean
1	1.2	1.6	1.4	1.8	1.5
4	37.7	48.3	38.1	39.9	38.6
7	53.0	51.2	52.8	61.0	
10	29.0	28.5	29.6	28.7	29.3
12	5.2	1.8	1.0	1.4	1.4

Mean at $\mathrm{pH} 7=$
4. Why do we calculate a mean?

Calculating percentage change

Key Knowledge
$>$ Equation
Final value - starting value $\times 100$
starting value

Worked example
A willow tree initially has a mass of $\mathbf{2 . 2 7} \mathbf{k g}$. After 5 years it has a mass of $\mathbf{7 6 . 7 4 \mathbf { k g }}$
76.74-2.27 $\times 100=3281$
2.27
= 3281 \% increase

Exam practice 2

1. Calculate the percentage change in mass for chip 5.

chip	concentration of sucrose solution mol per dm $^{-3}$	starting mass of beetroot chip in grams	end mass of beetroot chip in grams
1	0.0 (water)	2.56	3.89
2	0.2	2.47	2.88
3	0.4	1.99	2.00
4	0.6	2.30	2.12
5	0.8	2.15	1.84
6	1.0	2.22	1.62

2. Suggest why calculating a percentage change is more useful than calculating the change in mass in this investigation
\qquad
\qquad
3. Calculate the missing percentage change in mass.

concentration of salt solution/\%	mass/g			percentage change/ $/ \%$
	start	after 1 hour	change	
0	10.2	13.1	+2.9	+16.3
10	9.8	11.4	+1.6	
20	10.3	9.8	-0.5	-11.9
30	10.1	8.9	-1.2	-20.6
40	9.7	7.7	-2.0	

\% change =

Range

Key Knowledge
The range is the difference between the highest and lowest values in a set of data.

Worked example

Example 1

Find the range of these numbers: $6,4,6,5,3$.
First put them in order to make it easier to see the lowest and highest.
$3,4,5,6,6$

The lowest number is 3 and the highest is 6 .

Find the difference. Subtract 3 from 6 .
$6-3=3$ The range of this set of data is 3.

Exam practice 3

1. Find the range of these numbers: $16,17,16,19,13$.
2. Find the range of these numbers: $89,78,90,76,42$.
3. Compare the range of temperatures for Cardiff and London for a week in July. Temperatures are given in the table in degrees centigrade.
Sun Mon Tue Wed Thu Fri Sat

Cardiff $19^{\circ} 19^{\circ} 20^{\circ} 20^{\circ} 20^{\circ} 18^{\circ} 18^{\circ}$
London $20^{\circ} 22^{\circ} 22^{\circ} 21^{\circ} 20^{\circ} 21^{\circ} 19^{\circ}$

Converting Units

Worked example
To convert your units do the calculation shown in the diagram e.g. going from mm to m you divide the number by 1000 $6 \mathrm{~mm}=0.006 \mathrm{~m}$

Exam practice 4

1. Convert 34 millimetres into metres.
2. Convert 1034 nanometres into picometres.
3. Convert 6000000 seconds into microseconds.
4. Convert 87 nanoseconds into milliseconds.
5. The answer you get to a question is 0.15 mm .
Give your answer in a) m
b) $\mu \mathrm{m}$ c) nm

Standard form

Key information
We show figures as numbers between 1 and 10 multiplied by a power of 10 The index number tells us how many place values to move the digit.

You do the reverse for a number smaller than 0 and end up with a negative power.
Exam practice 5

1. Hydrochloric acid with a concentration of $0.001 \mathrm{~mol} / \mathrm{dm}^{3}$ is used in a chemical reaction. Give the concentration of the acid in stand form.
\qquad $\mathrm{mol} / \mathrm{dm}^{3}$
2. In a factory, $134000 \mathrm{dm}^{3}$ of a chemical are added to a reaction vessel. Write the volume used in standard form
\qquad
3. A biologist measures a cell that she is viewing under a microscope. The width of the cell is 0.00125 mm . Write the width in standard form.

Relative masses and moles

Key Knowledge Relative atomic masses

$>$ The mass of a single atom is so tiny that it is not practical to use it in experiments or calculations, that is why we use relative masses.
$>$ For relative atomic masses the carbon-12 $\left({ }_{6}^{12} \mathrm{C}\right)$ atom is used as the standard atom. The masses of all other atoms are a comparison of their mass to the mass of the carbon-12 atom, e.g. hydrogen has a relative atomic mass of 1 , which means most of its atoms have a mass that is $\frac{1}{12}$ of the mass of a ${ }_{6}^{12} C$ atom.
$>$ The symbol for relative atomic mass is A_{r}
$>$ In the periodic table, the bigger number by each element is its relative atomic mass.
$>$ Relative atomic mass takes into account the relative abundance (proportions) of any isotopes of the element found naturally. That is why some elements have a relative mass with decimals (e.g. chlorine $A_{r}=35.5$).
Worked example:
Chlorine has two principle isotopes, ${ }_{17}^{35} \mathrm{Cl}$ and ${ }_{17}^{37} \mathrm{Cl}$. Their percentage abundances are 76% and 24%.
To calculate the mean relative mass you need to:

1. Multiply each of the isotopes' masses by their percentage abundance
2. Add the answers from step 1
3. Divide the number from step 2 by 100 .
$A_{r}(\mathrm{Cl})=\frac{(35 \times 76)+(37 \times 24)}{100}=35.48 \approx 35.5$

Exam practice 6

1. From the periodic table, find the relative atomic masses of the following elements:
a. Nitrogen
b. Magnesium
c. Argon
d. Copper
e. Platinum
f. Barium
g. Bismuth
2. Copper has two isotopes, ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$. The percentage abundances are 69% and 31%. Calculate the mean relative atomic mass of copper.

Key Knowledge Relative formula mass

> Relative formula mass is the sum of the relative atomic masses of all the atoms shown in a chemical formula of a substance.
$>$ The symbol for relative formula mass is M_{r}.
> When dealing with molecular substances it can also be referred to as the relative molecular mass.
> You can calculate the percentage by mass of an element in a compound using the atomic masses of the elements and the formula mass of the compound:

- \% by mass(element) $=\frac{A_{r}(\text { element }) \times \text { number of atoms }}{M_{r}(\text { compound })} \times 100 \%$

Worked example, relative formula mass:
Calculate the formula mass of sulfuric acid.
The formula is $\mathrm{H}_{2} \mathrm{SO}_{4}$. The $A_{r}(\mathrm{H})=1, A_{r}(\mathrm{~S})=32, A_{r}(\mathrm{O})=16$.
$M_{r}=(1 \times 2)+32+(16 \times 4)=2+32+64=98$
Worked example, percentage by mass:
Calculate the percentage by mass of hydrogen in water.
$A_{r}(\mathrm{H})=1$
$A_{r}(\mathrm{O})=16$
$M_{r}\left(\mathrm{H}_{2} \mathrm{O}\right)=(1 \times 2)+16=18$
$\%$ by $\operatorname{mass}(\mathrm{H})=\frac{1 \times 2}{18} \times 100 \%=11 \%$

Exam practice 7

1. Calculate the relative formula mass for the following compounds:
a. Nitric acid
b. Hydrochloric acid
c. Water
d. CaCO_{3}
e. NaOH
2. Calculate the \% by mass of oxygen in the following compounds:
a. $\mathrm{H}_{2} \mathrm{O}$
b. NaOH
c. CaCO_{3}

Exam practice 8
Q1.
(ii) Calculate the relative formula mass of ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$.
(Relative atomic masses: $\mathrm{H}=1, \mathrm{~N}=14, \mathrm{Cl}=35.5$)
\qquad
\qquad
Relative formula mass $=$ \qquad

Q2. Iron is an essential part of the human diet. Iron(II) sulfate is sometimes added to white bread flour to provide some of the iron in a person's diet.
(a) The formula of iron(II) sulfate is FeSO_{4}

Calculate the relative formula mass $\left(M_{r}\right)$ of FeSO_{4}
Relative atomic masses: $\mathrm{O}=16 ; \mathrm{S}=32 ; \mathrm{Fe}=56$.
\qquad
\qquad
The relative formula mass $\left(M_{r}\right)=$ \qquad

Q3. Toothpastes often contain fluoride ions to help protect teeth from attack by bacteria.

Some toothpastes contain tin(II) fluoride.
This compound has the formula SnF_{2}.
(a) Calculate the relative formula mass $\left(M_{r}\right)$ of SnF_{2}.

Relative atomic masses: $F=19 ; S n=119$
\qquad
\qquad
\qquad

Key knowledge for \% of an element in a compound

1. Write down the formula of the compound
2. Use the relative atomic mass $\left(A_{r}\right)$ of the elements to calculate the relative formula mass (M_{r}).
3. Write the mass of the element you are investigating as a fraction of the total M_{r}.
4. Find the percentage by multiplying the fraction by 100.

Example

What percentage of carbon dioxide is actually carbon?
Formula of carbon dioxide $=\mathrm{CO}_{2}$

1. Ar of carbon $=12$

Ar of oxygen $=16$
Therefore $\mathrm{Mr}=12+(16 \times 2)=44$
2. $\frac{\text { Mass of carbon }}{\text { total mass of compound }}=\frac{12}{44}$
4. The percentage of carbon in the compound is:
$\frac{12}{44} \quad \times 100=27.3 \%$

Exam practice 9

Q1.
(a) The percentage by mass of oxygen in carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is calculated by the equation:
percentage by mass $=\frac{\text { number of atoms of } \mathrm{O} \times \text { Relative atomic mass of oxygen }(\mathrm{O})}{\text { relative molecular mass of carbon dioxide }\left(\mathrm{CO}_{2}\right)} \times 100$
Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{C}=12 \quad \mathrm{O}=16$
Calculate the percentage by mass of oxygen in carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

Percentage by mass of oxygen $=$ \%

Q2.

Some students investigated magnesium oxide.
(a) Magnesium oxide has the formula MgO .

Calculate the percentage by mass of magnesium in magnesium oxide.
\qquad
\qquad
Percentage by mass of magnesium in magnesium oxide $=$ \qquad \%
(2)

Q3.
(a) Molecular formula of copper oxide is CuO .

Calculate the percentage of copper in copper oxide.
\qquad
\qquad
\qquad
Percentage of copper $=\ldots \%$ \%
(2)

Expressing concentrations

Key Knowledge Volume

Volume is the amount of space a substance or object occupies.
$>$ There are many units that can be used to measure volume:

- Millilitres-ml
- Litres - I
- Cubic metres - m^{3}
- Cubic centimetres $-\mathrm{cm}^{3}$
- Cubic decimetres $-\mathrm{dm}^{\mathbf{3}} \leftarrow$ THIS IS THE UNIT CHEMISTS USE MOST
>1 litre is the same as $1 \mathrm{dm}^{3}$
$>1 \mathrm{ml}$ is the same as $1 \mathrm{~cm}^{3}$
$>$ Just as there are 1000 millilitres in a litre, there are $\mathbf{1 0 0 0} \mathbf{~ c m}^{\mathbf{3}}$ in $\mathbf{1} \mathbf{~ d m}^{\mathbf{3}}$

Worked examples:
Q1. A solution has a volume of $500 \mathrm{~cm}^{3}$, what is its volume in dm^{3} ?

- $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$
- So to convert cm^{3} into dm^{3} you just have to divide by 1000 !

$$
\frac{500 \mathrm{~cm}^{3}}{1000}=0.5 \mathrm{dm}^{3}
$$

Q2. A solution has a volume of $0.432 \mathrm{dm}^{3}$, what is its volume in cm^{3} ?

- $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$
- So to convert dm^{3} into cm^{3} you just have to multiply by 1000 !

$$
0.432 \mathrm{dm}^{3} \times 1000=432 \mathrm{~cm}^{3}
$$

Exam practice 10

1. What is $0.025 \mathrm{dm}^{3}$ in cm^{3} ?
2. What is $270 \mathrm{~cm}^{3}$ in dm^{3} ?
3. How many cm^{3} are in $0.052 \mathrm{dm}^{3}$?
4. A solution has a total volume of $986 \mathrm{~cm}^{3}$, what is this in cubic decimetres?
5. $25 \mathrm{~cm}^{3}$ is taken from a solution of total volume $0.45 \mathrm{dm}^{3}$ what volume of the solution remains?

Key Knowledge Concentration

$>$ Solute - the substance that is dissolved in a liquid.
$>$ Solvent - a liquid in which a substance is dissolved.
$>$ Solution - a mixture of the dissolved solute and solvent.
> Concentration - the amount of substance in a certain amount of solution.
> Calculating concentration:

- concentration, $c\left(\mathrm{~g} / \mathrm{dm}^{3}\right)=\frac{\text { amount of solute, } m(\mathrm{~g})}{\text { volume of solution, }\left(\begin{array}{ll} \\ \\ \\ \end{array}\right)}$
$>$ If the concentration is high, we call the solution concentrated.
$>$ If the concentration if low, we call the solution dilute.
$>$ Increasing the volume (adding more solvent), decreases the concentration.
$>$ Decreasing the volume (evaporating some of the solvent), increases the concentration.
$>$ By rearranging the concentration equation, you can calculate how much solute is in the solution, if you know the concentration and the volume of the solution.

Worked examples:
Q1. If 4 g of sodium is dissolved in $2 \mathrm{dm}^{3}$ what is the concentration?

$$
c\left(g / d m^{3}\right)=\frac{m(g)}{V\left(d m^{3}\right)}
$$

$$
\mathrm{c}=4 / 2=2 \mathrm{~g} / \mathrm{dm}^{3}
$$

Q2. If 5.5 g of sodium hydroxide is dissolved in $3 \mathrm{dm}^{3}$ what is the concentration?

$$
\mathrm{c}=5.5 / 3=1.83 \mathrm{~g} / \mathrm{dm}^{3}
$$

Q3. A solution of potassium hydroxide has a concentration of $10 \mathrm{~g} / \mathrm{dm}^{3}$, what mass of potassium hydroxide is dissolved in $0.5 \mathrm{dm}^{3}$ of it?
$m(g)=c\left(g / d m^{3}\right) \times V\left(d m^{3}\right) \quad \mathrm{m}=10 \times 0.5=5 \mathrm{~g}$
Exam practice 11

1. If 5 g of sodium is dissolved in $1 \mathrm{dm}^{3}$ what is the concentration?
2. If 8 g of sodium hydroxide is dissolved in $2 \mathrm{dm}^{3}$ what is the concentration?
3. What is the concentration of a solution when 50 g of hydrogen chloride is dissolved in $5 \mathrm{dm}^{3}$ of water?
4. How concentrated is a $500 \mathrm{~cm}^{3}$ solution that contains 6 g of potassium hydroxide?
5. What mass of lithium is dissolved in $0.4 \mathrm{dm}^{3}$ of a $15 \mathrm{~g} / \mathrm{dm}^{3}$ solution?
6. How many grams of hydrogen chloride are dissolved in $4 \mathrm{dm}^{3}$ of a $1.4 \mathrm{~g} / \mathrm{dm}^{3}$ solution?
7. A flask contains $400 \mathrm{~cm}^{3}$ of a $5 \mathrm{~g} / \mathrm{dm}^{3}$ solution of potassium hydroxide. If all the water was evaporated, what mass of potassium hydroxide would remain?
8. A student took $25 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~g} / \mathrm{dm}^{3}$ sodium thiosulfate solution. What mass of sodium thiosulfate does it contain

Exam practice 12

1. Calculate the concentrations of each of the following solutions in units of $\mathrm{g} / \mathrm{dm} 3$:
a) 10.0 g of sodium chloride dissolved in $2.00 \mathrm{dm}^{3}$ of water
\qquad
\qquad
b) 2.5 g of glucose dissolved in $0.5 \mathrm{dm}^{3}$ of water
\qquad
\qquad
c) 3.8 g of copper sulfate dissolved in $250 \mathrm{~cm}^{3}$ of water
\qquad
\qquad
d) 25.6 g of potassium chloride dissolved in 1500 cm 3 of water.
2. Calculate the mass of solute dissolved in each of the following solutions in g :
a) $2 \mathrm{dm}^{3}$ copper sulphate solution of concentration $3 \mathrm{~g} / \mathrm{dm}^{3}$.
\qquad
\qquad
b) $5 \mathrm{dm}^{3}$ sodium carbonate solution of concentration $2.5 \mathrm{~g} / \mathrm{dm}^{3}$.
\qquad
\qquad
c) 250 cm 3 copper sulfate solution of concentration $1.2 \mathrm{~g} / \mathrm{dm}^{3}$.
\qquad
\qquad
